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Review



Hidden Markov models

• Belief network

S1 S2
. . .

O2O1

S3

O3 OT

ST

observations ot 2 {1, 2, . . . ,m}

states st 2 {1, 2, . . . ,n}

• Parameters
aij = P(St+1= j|St= i) n⇥n transition matrix
bik = P(Ot=k|St= i) n⇥m emission matrix
⇡i = P(S1= i) n⇥1 initial state distribution

• Notation

Sometimes we’ll write bi(k) = bik to avoid double
subscripts.
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Key computations in HMMs

OT-1

S1 S2 ST-1
. . .

O2O1

S3

O3

S4

O4 OT

ST

Inference

1. How to compute the likelihood P(o1,o2, . . . ,oT)?

2. How to compute the most likely hidden states argmax~s P(~s|~o)?

3. How to update beliefs by computing P(st|o1,o2, . . . ,ot)?

Learning

How to estimate parameters {⇡i,aij,bik} that maximize the
log-likelihood of observed sequences?
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Example1 - Set Up

Imagine that you are a climatologist in the year 2799 studying
the history of global warming. You cannot find any records of
the weather in Baltimore, Maryland, for the summer of 2020,
but you do find Jason Eisner’s diary, which lists how many ice
creams (1, 2 or 3) Jason ate every day that summer. Our goal is
to use these observations to estimate the temperature every
day. We’ll simplify this weather task by assuming there are
only two kinds of days: cold (C) and hot (H).

1Eisner, J. 2002. An interactive spreadsheet for teaching the
forward-backward algorithm.
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Example

• Two hidden states (Weather): {H, C}
• Observations (Ice creams): {1, 2, 3}
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Computing likelihood via enumeration

Sequence of observations: o1 = 3,o2 = 1,o3 = 3

P(~o) =
X

s1,s2,s3
P(o1,o2,o3, s1, s2, s3)

=
X

s1,s2,s3
P(s1) · P(o1|s1) · P(s2|s1) · P(o2|s2) · P(s3|s2) · P(o3|s3)

Q. What is the number of all possible state sequences for the
three observations (3, 1, 3)?

A. 2 B. 4 C. 8 D. 16 E. 32

Complexity: O(NT) where N = number of states, T = sequence
length

10 / 74

-

-

P(0 ,

= 3
,
02 = 1

,
03 = 3)-

=



Computing likelihood via enumeration

Sequence of observations: o1 = 3,o2 = 1,o3 = 3

P(~o) =
X

s1,s2,s3
P(o1,o2,o3, s1, s2, s3)

=
X

s1,s2,s3
P(s1) · P(o1|s1) · P(s2|s1) · P(o2|s2) · P(s3|s2) · P(o3|s3)

Q. What is the number of all possible state sequences for the
three observations (3, 1, 3)?

A. 2 B. 4 C. 8 D. 16 E. 32

Complexity: O(NT) where N = number of states, T = sequence
length

11 / 74



Computing likelihood via enumeration

Sequence of observations: o1 = 3,o2 = 1,o3 = 3

P(~o) =
X

s1,s2,s3
P(o1,o2,o3, s1, s2, s3)

=
X

s1,s2,s3
P(s1) · P(o1|s1) · P(s2|s1) · P(o2|s2) · P(s3|s2) · P(o3|s3)

Q. What is the number of all possible state sequences for the
three observations (3, 1, 3)?

A. 2 B. 4 C. 8 D. 16 E. 32

Complexity: O(NT) where N = number of states, T = sequence
length

12 / 74

---

H
, < H

,
12 It

,
K

E3 D B
2 + 2 xz

23



Computing likelihood via enumeration

Sequence of observations: o1 = 3,o2 = 1,o3 = 3

P(~o) =
X

s1,s2,s3
P(o1,o2,o3, s1, s2, s3)

=
X

s1,s2,s3
P(s1) · P(o1|s1) · P(s2|s1) · P(o2|s2) · P(s3|s2) · P(o3|s3)

Q. What is the number of all possible state sequences for the
three observations (3, 1, 3)?

A. 2 B. 4 C. 8 D. 16 E. 32

Complexity: O(NT) where N = number of states, T = sequence
length

13 / 74

↓

mar

product Veter



Computing likelihood via enumeration

Possible state sequences:

C ! C ! C : P(C) · P(3|C) · P(C|C) · P(1|C) · P(C|C) · P(3|C)
C ! C ! H : P(C) · P(3|C) · P(C|C) · P(1|C) · P(H|C) · P(3|H)
C ! H! C : P(C) · P(3|C) · P(H|C) · P(1|H) · P(C|H) · P(3|C)
C ! H! H : P(C) · P(3|C) · P(H|C) · P(1|H) · P(H|H) · P(3|H)
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Example
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Forward Algorithm



Computing P(o1,o2, . . . ,ot, St= i)

Definition

For a particular sequence of observations {o1,o2, . . . ,oT},
define the matrix with elements:

↵it = P(o1,o2, . . . ,ot, St= i)
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Example - Forward Algorithm
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Example - Forward Algorithm
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Example - Forward Algorithm
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Example - Forward Algorithm
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Computing P(o1,o2, . . . ,ot, St= i)

• Definition

For a particular sequence of observations {o1,o2, . . . ,oT},
define the matrix with elements:

↵it = P(o1,o2, . . . ,ot, St= i)

n rows

8
>>>>><

>>>>>:

2

666664

↵11 ↵12 · · · ↵1,T�1 ↵1T
↵21 ↵22 · · · ↵2,T�1 ↵2T
...

...
...

...
...

↵n1 ↵n2 · · · ↵n,T�1 ↵nT

3

777775

↵it represents the probability of being in state i after
seeing the first t observations.

• First column (t = 1)

↵i1 = P(o1, S1= i)

= P(S1= i)P(o1|S1= i) product rule

= ⇡i bi(o1) CPTs
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Computing ↵i2 = P(o1,o2, S2= i)

• Next column (t = 2)

↵j,2 = P(o1, o2, S2= j)

=
nX

i=1
P(o1, o2, S1= i, S2= j) marginalization

=
nX

i=1


P(o1, S1= i) ·

P(S2= j|o1, S1= i) ·

P(o2|o1, S1= i, S2= j)
�

product rule

=
nX

i=1


P(o1, S1= i) P(S2= j|S1= i) P(o2|S2= j)

�
CI

=
nX

i=1
↵i1 aij bj(o2) CPTs
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Computing ↵it = P(o1,o2, . . . ,ot, St= i)

• Next columns (t > 1)

↵j,t+1 = P(o1, o2, . . . , ot+1, St+1= j)

=
nX

i=1
P(o1, o2, . . . , ot+1, St= i, St+1= j) marginalization

=
nX

i=1


P(o1, o2, . . . , ot, St= i) ·

P(St+1= j|o1, o2, . . . , ot, St= i) ·

P(ot+1|o1, o2, . . . , ot, St= i, St+1= j)
�

product rule

=
nX

i=1


P(o1, o2, . . . , ot, St= i) P(St+1= j|St= i) P(ot+1|St+1= j)

�
CI

=
nX

i=1
↵it aij bj(ot+1) CPTs
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Forward algorithm

47 / 74

P(0 ,,
02

,
S2)

not

B
,
S2)

#



Forward algorithm

The forward algorithm fills in the matrix of ↵it elements
one column at a time:
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Forward algorithm

The forward algorithm fills in the matrix of ↵it elements
one column at a time:

↵i1 = ⇡i bi(o1)

↵j,t+1 =
nX

i=1
↵it aij bj(ot+1)

Warning: for long sequences, beware of numerical underflow ...
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Computing the likelihood P(o1,o2, . . . ,oT)

P(o1,o2, . . . ,oT)

=
nX

i=1
P(o1,o2, . . . ,oT , sT= i) marginalization

=
nX

i=1
↵iT sum of last column
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Computing the likelihood P(o1,o2, . . . ,oT)

Sum!

P(o1,o2, . . . ,oT)

=
nX

i=1
P(o1,o2, . . . ,oT , sT= i) marginalization

=
nX

i=1
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Example - Forward Algorithm

↵i1 = ⇡i bi(o1)

↵j,t+1 =
nX

i=1
↵it aij bj(ot+1)
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Question

What is the running time for Forward algorithm?

A. O(n)

B. O(n2)

C. O(Tn2)

D. O(T2n4)

E. O(nT )
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Pseudocode
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Viterbi algorithm



Viterbi Algorithm

There are many paths through the hidden states (H and C) that
lead to the given sequence, but they do not all have the same
probability.
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The most likely sequence of hidden states

The Viterbi algorithm allows us to efficiently compute the most
probable path using dynamic programming.

{s⇤1 , s⇤2 , . . . , s⇤T}

= argmaxs1,s2,...,sT P(s1, s2, . . . , sT |o1,o2, . . . ,oT)
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The matrix `⇤

For a particular sequence of observations {o1,o2, . . . ,oT},
we define the following matrix:

`⇤it = max
s1,s2,...,st�1

P(s1, s2, . . . , st�1, St= i,o1,o2, . . . ,ot)

Q. What does `⇤ mean, in English?

A. The probability of the most likely s1, · · · , st given
o1, · · · ,ot

B. The most likely state at time t

C. The probability of the most likely s1, · · · , st that ends in
state st = i and explains o1, · · · ,ot

D. The probability of most likely states s1, · · · , st that
explains observations o1, · · · ,ot
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Example - Viterbi (Fill `⇤)
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Example - Viterbi (Backtrack through `⇤)
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Viterbi Algorithm

In practice, we switch to log probabilities:

• Optimization stays the same (doesn’t change our outcome)
• Allows us to compute sums instead of products
• Prevent underflow
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That’s all folks!
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